
Stateless OpenPGP Command Line
Interface

Abstract
This document defines a generic stateless command-line interface for dealing with
OpenPGP messages, known as sop. It aims for a minimal, well-structured API covering
OpenPGP object security.

Workgroup: openpgp
Internet-Draft: draft-dkg-openpgp-stateless-cli-02
Published: 29 October 2019
Intended Status: Informational
Expires: 1 May 2020
Author: D.K. Gillmor

ACLU

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and
BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF).
Note that other groups may also distribute working documents as Internet-Drafts. The
list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is inappropriate to
use Internet-Drafts as reference material or to cite them other than as "work in
progress."

This Internet-Draft will expire on 1 May 2020.

Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All
rights reserved.

[Page 1]

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to
IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication
of this document. Please review these documents carefully, as they describe your
rights and restrictions with respect to this document. Code Components extracted from
this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the
Simplified BSD License.

[Page 2]

▲

Table of Contents
1. Introduction

1.1. Requirements Language

1.2. Terminology

2. Examples

3. Subcommands

3.1. version: Version Information

3.2. generate-key: Generate a Secret Key

3.3. extract-cert: Extract a Certificate from a Secret Key

3.4. sign: Create a Detached Signature

3.5. verify: Verify a Detached Signature

3.6. encrypt: Encrypt a Message

3.7. decrypt: Decrypt a Message

3.8. armor: Add ASCII Armor

3.9. dearmor: Remove ASCII Armor

4. Input String Types

4.1. DATE

4.2. USERID

5. Input/Output Indirect Types

5.1. CERTS

5.2. KEY

5.3. CIPHERTEXT

5.4. SIGNATURE

5.5. SESSIONKEY

5.6. PASSWORD

5.7. VERIFICATIONS

[Page 3]

5.8. DATA

6. Failure Modes

7. Guidance for Implementers

7.1. One OpenPGP Message at a Time

7.2. Simplified Subset of OpenPGP Message

7.3. Validate Signatures Only from Known Signers

7.4. Detached Signatures

7.5. Reliance on Supplied Certs and Keys

8. Guidance for Consumers

9. Security Considerations

9.1. Signature Verification

9.2. Compression

10. Privacy Considerations

10.1. Object Security vs. Transport Security

11. Document Considerations

11.1. Document History

11.2. Future Work

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

 Author's Address

[Page 4]

1. Introduction
Different OpenPGP implementations have many different requirements, which
typically break down in two main categories: key/certificate management and object
security.

The purpose of this document is to provide a "stateless" interface that primarily
handles the object security side of things, and assumes that secret key management
and certificate management will be handled some other way.

This separation should make it easier to provide interoperability testing for the object
security work, and to allow implementations to consume and produce new
cryptographic primitives as needed.

This document defines a generic stateless command-line interface for dealing with
OpenPGP messages, known here by the placeholder sop. It aims for a minimal, well-
structured API.

An OpenPGP implementation should not name its executable sop to implement this
specification, of course. It just needs to provide a binary that conforms to this
interface.

A sop implementation should leave no trace on the system, and its behavior should
not be affected by anything other than command-line arguments and input.

Obviously, the user will need to manage their secret keys (and their peers' certificates)
somehow, but the goal of this interface is to separate out that task from the task of
interacting with OpenPGP messages.

While this document identifies a command-line interface, the rough outlines of this
interface should also be amenable to relatively straightforward library
implementations in different languages.

1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174]
when, and only when, they appear in all capitals, as shown here.

[Page 5]

1.2. Terminology
This document uses the term "key" to refer exclusively to OpenPGP Transferable Secret
Keys (see section 11.2 of

It uses the term "certificate" to refer to OpenPGP Transferable Public Key (see section
11.1 of

"Stateless" in "Stateless OpenPGP" means avoiding secret key and certificate state. The
user is responsible for managing all OpenPGP certificates and secret keys themselves,
and passing them to sop as needed. The user should also not be concerned that any
state could affect the underlying operations.

OpenPGP revocations can have "Reason for Revocation" (section 5.2.3.23 of

[RFC4880]).

[RFC4880]).

[RFC4880]),
which can be either "soft" or "hard". The set of "soft" reasons is: "Key is superseded"
and "Key is retired and no longer used". All other reasons (and revocations that do not
state a reason) are "hard" revocations.

2. Examples
These examples show no error checking, but give a flavor of how sop might be used in
practice from a shell.

The key and certificate files described in them (e.g. alice.sec) could be for example
those found in [I-D.draft-bre-openpgp-samples-00].

sop generate-key "Alice Lovelace <alice@openpgp.example>" > alice.sec
sop extract-cert < alice.sec > alice.pgp

sop sign --as=text alice.sec < announcement.txt >
announcement.txt.asc
sop verify announcement.txt.asc alice.pgp < announcement.txt

sop encrypt --sign-with=alice.sec --as=mime bob.pgp < msg.eml >
encrypted.asc
sop decrypt alice.sec < ciphertext.asc > cleartext.out

[Page 6]

3. Subcommands
sop uses a subcommand interface, similar to those popularized by systems like git
and svn.

If the user supplies a subcommand that sop does not implement, it fails with a return
code of 69. If a sop implementation does not handle a supplied option for a given
subcommand, it fails with a return code of 37.

For all commands that have an --armor|--no-armor option, it defaults to --armor,
meaning that any output OpenPGP material should be ASCII-armored (section 6 of [I-
D.ietf-openpgp-rfc4880bis]) by default.

3.1. version: Version Information

Standard Input: ignored

Standard Output: version string

The version string emitted should contain the name of the sop implementation,
followed by a single space, followed by the version number.

Example:

sop version

•

•

$ sop version
ExampleSop 0.2.1
$

3.2. generate-key: Generate a Secret Key

Standard Input: ignored

Standard Output: KEY (Section 5.2)

Generate a single default OpenPGP certificate with zero or more User IDs.

sop generate-key [--armor|--no-armor] [--] [USERID…]

•

•

[Page 7]

Example:

$ sop generate-key 'Alice Lovelace <alice@openpgp.example>' >
alice.sec
$ head -n1 < alice.sec
-----BEGIN PGP PRIVATE KEY BLOCK-----
$

3.3. extract-cert: Extract a Certificate from a Secret Key

Standard Input: KEY (Section 5.2)

Standard Output: CERTS (Section 5.1)

Note that the resultant CERTS object will only ever contain one OpenPGP certificate.

Example:

sop extract-cert [--armor|--no-armor]

•

•

$ sop extract-cert < alice.sec > alice.pgp
$ head -n1 < alice.pgp
-----BEGIN PGP PUBLIC KEY BLOCK-----
$

3.4. sign: Create a Detached Signature

Standard Input: DATA (Section 5.8)

Standard Output: SIGNATURE (Section 5.4)

--as defaults to binary. If --as=text and the input DATA is not valid UTF-8, sop sign
fails with a return code of 53.

Example:

sop sign [--armor|--no-armor]
 [--as={binary|text}] [--] KEY [KEY...]

•

•

[Page 8]

$ sop sign --as=text alice.sec < message.txt > message.txt.asc
$ head -n1 < message.txt.asc
-----BEGIN PGP SIGNATURE-----
$

3.5. verify: Verify a Detached Signature

Standard Input: DATA (Section 5.8)

Standard Output: VERIFICATIONS (Section 5.7)

--not-before and --not-after indicate that signatures with dates outside certain
range MUST NOT be considered valid.

--not-before defaults to the beginning of time. Accepts the special value - to indicate
the beginning of time (i.e. no lower boundary).

--not-after defaults to the current system time (now). Accepts the special value - to
indicate the end of time (i.e. no upper boundary).

sop verify only returns 0 if at least one certificate included in any CERTS object made
a valid signature in the range over the DATA supplied.

For details about the valid signatures, the user MUST inspect the VERIFICATIONS
output.

If no CERTS are supplied, sop verify fails with a return code of 19.

If no valid signatures are found, sop verify fails with a return code of 3.

See Section 9.1 for more details about signature verification.

Example:

(In this example, we see signature verification succeed first, and then fail on a
modified version of the message.)

sop verify [--not-before=DATE] [--not-after=DATE]
 [--] SIGNATURE CERTS [CERTS...]

•

•

[Page 9]

$ sop verify message.txt.asc alice.pgp < message.txt
2019-10-29T18:36:45Z EB85BB5FA33A75E15E944E63F231550C4F47E38E
EB85BB5FA33A75E15E944E63F231550C4F47E38E signed by alice.pgp
$ echo $?
0
$ tr a-z A-Z < message.txt | sop verify message.txt.asc alice.pgp
$ echo $?
3
$

3.6. encrypt: Encrypt a Message

Standard Input: DATA (Section 5.8)

Standard Output: CIPHERTEXT (Section 5.3)

--as defaults to binary.

--with-password enables symmetric encryption (and can be used multiple times if
multiple passwords are desired). If sop encrypt encounters a PASSWORD which is not a
valid UTF-8 string, it fails with a return code of 31. If sop encrypt sees trailing
whitespace at the end of a PASSWORD, it will trim the trailing whitespace before using
the password.

--sign-with enables signing by a secret key (and can be used multiple times if
multiple signatures are desired).

If --as is set to either text or mime, then --sign-with will sign as a canonical text
document. In this case, if the input DATA is not valid UTF-8, sop encrypt fails with a
return code of 53.

The resulting CIPHERTEXT should be decryptable by the secret keys corresponding to
every certificate included in all CERTS, as well as each password given with --with-
password.

If no CERTS or --with-password options are present, sop encrypt fails with a return
code of 19.

sop encrypt [--as={binary|text|mime}]
 [--armor|--no-armor]
 [--with-password=PASSWORD...]
 [--sign-with=KEY...]
 [--] [CERTS...]

•

•

[Page 10]

If at least one of the identified certificates requires encryption to an unsupported
asymmetric algorithm, sop encrypt fails with a return code of 13.

If at least one of the identified certificates is not encryption-capable (e.g., revoked,
expired, no encryption-capable flags on primary key and valid subkeys), sop encrypt
fails with a return code of 17.

If sop encrypt fails for any reason, it emits no CIPHERTEXT.

Example:

(In this example, bob.bin is a file containing Bob's binary-formatted OpenPGP
certificate. Alice is encrypting a message to both herself and Bob.)

$ sop encrypt --as=mime --sign-with=alice.key alice.asc bob.bin <
message.eml > encrypted.asc
$ head -n1 encrypted.asc
-----BEGIN PGP MESSAGE-----
$

3.7. decrypt: Decrypt a Message

Standard Input: CIPHERTEXT (Section 5.3)

Standard Output: DATA (Section 5.8)

--session-key-out can be used to learn the session key on successful decryption.

If sop decrypt fails for any reason and the identified --session-key-out file already
exists in the filesystem, the file will be unlinked.

--with-session-key enables decryption of the CIPHERTEXT using the session key
directly against the SEIPD packet. This option can be used multiple times if several
possible session keys should be tried.

sop decrypt [--session-key-out=SESSIONKEY]
 [--with-session-key=SESSIONKEY...]
 [--with-password=PASSWORD...]
 [--verify-out=VERIFICATIONS
 [--verify-with=CERTS...]
 [--verify-not-before=DATE]
 [--verify-not-after=DATE]]
 [--] [KEY...]

•

•

[Page 11]

--with-password enables decryption based on any SKESK packets in the CIPHERTEXT.
This option can be used multiple times if the user wants to try more than one
password.

If sop decrypt tries and fails to use a supplied PASSWORD, and it observes that there is
trailing UTF-8 whitespace at the end of the PASSWORD, it will retry with the trailing
whitespace stripped.

--verify-out produces signature verification status to the designated file.

sop decrypt does not fail (that is, the return code is not modified) based on the results
of signature verification. The caller MUST check the returned VERIFICATIONS to
confirm signature status. An empty VERIFICATIONS output indicates that no valid
signatures were found. If sop decrypt itself fails for any reason, and the identified
VERIFICATIONS file already exists in the filesystem, the file will be unlinked.

--verify-with identifies a set of certificates whose signatures would be acceptable
for signatures over this message.

If the caller is interested in signature verification, both --verify-out and at least one
--verify-with must be supplied. If only one of these arguments is supplied, sop
decrypt fails with a return code of 23.

--verify-not-before and --verify-not-after provide a date range for acceptable
signatures, by analogy with the options for sop verify (see Section 3.5). They should
only be supplied when doing signature verification.

See Section 9.1 for more details about signature verification.

If no KEY or --with-password or --with-session-key options are present, sop
decrypt fails with a return code of 19.

If unable to decrypt, sop decrypt fails with a return code of 29.

sop decrypt only returns cleartext to Standard Output that was successfully
decrypted.

Example:

(In this example, Alice stashes and re-uses the session key of an encrypted message.)

[Page 12]

$ sop decrypt --session-key-out=session.key alice.sec <
ciphertext.asc > cleartext.out
$ ls -l ciphertext.asc cleartext.out
-rw-r--r-- 1 user user 321 Oct 28 01:34 ciphertext.asc
-rw-r--r-- 1 user user 285 Oct 28 01:34 cleartext.out
$ sop decrypt --with-session-key=session.key < ciphertext.asc >
cleartext2.out
$ diff cleartext.out cleartext2.out
$

3.8. armor: Add ASCII Armor

Standard Input: 8-bit, unarmored OpenPGP material (SIGNATURE, CERTS, KEY, or
CIPHERTEXT)

Standard Output: the same material with ASCII-armoring added

The user can choose to specify the label used in the header and tail of the armoring.
The default is auto, in which case, sop inspects the input and chooses the label
appropriately. In this case, if sop cannot select a label on the basis of the input, it treats
it as literal data, and labels it as a message.

If the incoming data is already armored, and the --allow-nested flag is not specified,
the data MUST be output with no modifications. Data is considered ASCII armored iff
the first 14 bytes are exactly -----BEGIN PGP. This operation is thus idempotent by
default.

Example:

sop armor [--label={auto|sig|key|cert|message}]
 [--allow-nested]

•

•

$ sop armor < bob.bin > bob.pgp
$ head -n1 bob.pgp
-----BEGIN PGP PUBLIC KEY BLOCK-----
$

3.9. dearmor: Remove ASCII Armor

sop dearmor

[Page 13]

Standard Input: ASCII-armored OpenPGP material (CIPHERTEXT, SIGNATURE,
CERTS, or KEY)

Standard Output: the same material with ASCII-armoring removed

Example:

•

•

$ sop dearmor < message.txt.asc > message.txt.sig
$

4. Input String Types
Some material is passed to sop directly as a string on the command line.

4.1. DATE
An ISO-8601 formatted timestamp with time zone, or the special value now to indicate
the current system time.

Examples:

In some cases where used to specify lower and upper boundaries, a DATE value can be
set to - to indicate "no time limit".

A flexible implementation of sop MAY accept date inputs in other unambiguous forms.

now
2019-10-29T12:11:04+00:00
2019-10-24T23:48:29Z
20191029T121104Z

4.2. USERID
This is an arbitrary UTF-8 string. By convention, most User IDs are of the form
Display Name <email.address@example.com>, but they do not need to be.

[Page 14]

5. Input/Output Indirect Types
Some material is passed to sop indirectly, typically by referring to a filename
containing the data in question. This type of data may also be passed to sop on
Standard Input, or delivered by sop to Standard Output.

If the filename for any indirect material used as input has the special form @ENV:xxx,
then contents of environment variable $xxx is used instead of looking in the
filesystem.

If the filename for any indirect material used as either input or output has the special
form @FD:nnn where nnn is a decimal integer, then the associated data is read from file
descriptor nnn.

If any input data does not meet the requirements described below, sop will fail with a
return code of 41.

5.1. CERTS
One or more OpenPGP certificates (section 11.1 of

Although some existing workflows may prefer to use one CERTS object with multiple
certificates in it (a "keyring"), supplying exactly one certificate per CERTS input will
make error reporting clearer and easier.

[I-D.ietf-openpgp-rfc4880bis]), aka
"Transferable Public Key". May be armored.

5.2. KEY
Exactly one OpenPGP Transferable Secret Key (section 11.2 of

Secret key material should be in cleartext (that is, it should not be locked with a
password). If the secret key material is locked with a password, sop may fail to use the
key.

[I-D.ietf-openpgp-
rfc4880bis]). May be armored.

5.3. CIPHERTEXT
sop accepts only a restricted subset of the arbitrarily-nested grammar allowed by the
OpenPGP Messages definition (section 11.3 of

In particular, it accepts and generates only:

[I-D.ietf-openpgp-rfc4880bis]).

[Page 15]

An OpenPGP message, consisting of a sequence of PKESKs (section 5.1 of

The SEIPD can decrypt into one of two things:

"Maybe Signed Data" (see below), or

Compressed data packet that contains "Maybe Signed Data"

"Maybe Signed Data" is a sequence of:

N (zero or more) one-pass signature packets, followed by

zero or more signature packets, followed by

one Literal data packet, followed by

N signature packets (corresponding to the outer one-pass signatures packets)

FIXME: does any tool do compression inside signing? Do we need to handle that?

May be armored.

[I-D.ietf-
openpgp-rfc4880bis]) and SKESKs (section 5.3 of [I-D.ietf-openpgp-rfc4880bis]),
followed by one SEIPD (section 5.14 of [I-D.ietf-openpgp-rfc4880bis]).

•

•

•

•

•

•

5.4. SIGNATURE
One or more OpenPGP Signature packets. May be armored.

5.5. SESSIONKEY
This documentation uses the GnuPG defacto ASCII representation:

ALGONUM:HEXKEY

where ALGONUM is the decimal value associated with the OpenPGP Symmetric Key
Algorithms (section 9.3 of

Example AES-256 session key:

[I-D.ietf-openpgp-rfc4880bis]).

9:FCA4BEAF687F48059CACC14FB019125CD57392BAB7037C707835925CBF9F7BCD

5.6. PASSWORD
This is expected to be a UTF-8 string, but for sop decrypt, any bytestring that the user
supplies will be accepted. Note the details in sop encrypt and sop decrypt about
trailing whitespace!

[Page 16]

5.7. VERIFICATIONS
One line per successful signature verification. Each line has three structured fields
delimited by a single space, followed by arbitrary text to the end of the line.

ISO-8601 UTC datestamp

Fingerprint of the signing key (may be a subkey)

Fingerprint of primary key of signing certificate (if signed by primary key, same as
the previous field)

arbitrary text

Example:

•

•

•

•

2019-10-24T23:48:29Z C90E6D36200A1B922A1509E77618196529AE5FF8
C4BC2DDB38CCE96485EBE9C2F20691179038E5C6 certificate from dkg.asc

5.8. DATA
Cleartext, arbitrary data. This is either a bytestream or UTF-8 text.

It MUST only be UTF-8 text in the case of input supplied to sop sign --as=text or
sop encrypt --as={mime|text}. If sop receives DATA containing non-UTF-8 octets in
this case, it will fail with return code 53.

6. Failure Modes
When sop succeeds, it will return 0 and emit nothing to Standard Error. When sop
fails, it fails with a non-zero return code, and emits one or more warning messages on
Standard Error. Known return codes include:

Return Meaning

0 Success

3 No acceptable signatures found (sop verify)

13 Asymmetric algorithm unsupported (sop encrypt)

[Page 17]

Return Meaning

17 Certificate not encryption-capable (e.g., expired, revoked, unacceptable
usage flags) (sop encrypt)

19 Missing required argument

23 Incomplete verification instructions (sop decrypt)

29 Unable to decrypt (sop decrypt)

31 Non-UTF-8 password (sop encrypt)

37 Unsupported option

41 Invalid data type (no secret key where KEY expected, etc)

53 Non-text input where text expected

69 Unsupported subcommand

Table 1

A sop implementation MAY return other error codes than those listed above.

7. Guidance for Implementers
sop uses a few assumptions that implementers might want to consider.

7.1. One OpenPGP Message at a Time
sop is intended to be a simple tool that operates on one OpenPGP object at a time. It
should be composable, if you want to use it to deal with multiple OpenPGP objects.

FIXME: discuss what this means for streaming. The stdio interface doesn't necessarily
imply streamed output.

7.2. Simplified Subset of OpenPGP Message
While the formal grammar for OpenPGP Message is arbitrarily nestable, sop
constrains itself to what it sees as a single "layer" (see Section 5.3).

This is a deliberate choice, because it is what most consumers expect, and runaway
recursion is bad news.

[Page 18]

Note that an implementation of sop decrypt MAY choose to handle more complex
structures, but if it does, it should document the other structures it handles and why it
chooses to do so. We can use such documentation to improve future versions of this
spec.

7.3. Validate Signatures Only from Known Signers
There are generally only a few signers who are relevant for a given OpenPGP message.
When verifying signatures, sop expects that the caller can identify those relevant
signers ahead of time.

7.4. Detached Signatures
sop deals with detached signatures as the baseline form of OpenPGP signatures.

The main problem this avoids is the trickiness of handling a signature that is mixed
inline into the data that it is signing.

7.5. Reliance on Supplied Certs and Keys
A truly stateless implementation may find that it spends more time validating the
internal consistency of certificates and keys than it does on the actual object security
operations.

For performance reasons, an implementation may choose to ignore validation on
certificate and key material supplied to it. The security implications of doing so
depend on how the certs and keys are managed outside of sop.

8. Guidance for Consumers
While sop is originally conceived of as an interface for interoperability testing, it's
conceivable that an application that uses OpenPGP for object security would want to
use it.

FIXME: more guidance for how to use such a tool safely and efficiently goes here.

FIXME: if an encrypted OpenPGP message arrives without metadata, it is difficult to
know which signers to consider when decrypting. How do we do this efficiently
without invoking sop decrypt twice, once without --verify-* and again with the
expected identity material?

[Page 19]

9. Security Considerations
The OpenPGP object security model is typically used for confidentiality and
authenticity purposes.

9.1. Signature Verification
In many contexts, an OpenPGP signature is verified to prove the origin and integrity of
an underlying object.

When sop checks a signature (e.g. via sop verify or sop decrypt --verify-with), it
MUST NOT consider it to be verified unless all of these conditions are met:

The signature must be made by a signing-capable public key that is present in one
of the supplied certificates

The certificate and signing subkey must have been created before or at the
signature time

The cetificate and signing subkey must not have been expired at the signature
time

The certificate and signing subkey must not be revoked with a "hard" revocation

If the certificate or signing subkey is revoked with a "soft" revocation, then the
signature time must predate the revocation

The signing subkey must be properly bound to the primary key, and cross-signed

The signature (and any dependent signature, such as the cross-sig or subkey
binding signatures) must be made with strong cryptographic algorithms (e.g., not
MD5 or a 1024-bit RSA key)

Implementers MAY also consider other factors in addition to the origin and
authenticity, including application-specific information.

For example, consider the application domain of checking software updates.

If software package Foo version 13.3.2 was signed on 2019-10-04, and the user receives
a copy of Foo version 12.4.8 that was signed on 2019-10-16, it may be authentic and
have a more recent signature date. But it is not an upgrade (12.4.8 < 13.3.2), and
therefore it should not be applied automatically.

In such cases, it is critical that the application confirms that the other information
verified is also protected by the relevant OpenPGP signature.

•

•

•

•

•

•

•

[Page 20]

Signature validity is a complex topic, and this documentation cannot list all possible
details.

9.2. Compression
The interface as currently specified does not allow for control of compression.
Compressing and encrypting data that may contain both attacker-supplied material
and sensitive material could leak information about the sensitive material (see the
CRIME attack).

Unless an application knows for sure that no attacker-supplied material is present in
the input, it should not compress during encryption.

10. Privacy Considerations
Material produced by sop encrypt may be placed on an untrusted machine (e.g., sent
through the public SMTP network). That material may contain metadata that leaks
associational information (e.g., recipient identifiers in PKESK packets). FIXME:
document things like PURBs and --hidden-recipient)

10.1. Object Security vs. Transport Security
OpenPGP offers an object security model, but says little to nothing about how the
secured objects get to the relevant parties.

When sending or receiving OpenPGP material, the implementer should consider what
privacy leakage is implicit with the transport.

11. Document Considerations
[RFC Editor: please remove this section before publication]

This document is currently edited as markdown. Minor editorial changes can be
suggested via merge requests at https://gitlab.com/dkg/openpgp-stateless-cli or by e-
mail to the authors. Please direct all significant commentary to the public IETF
OpenPGP mailing list: openpgp@ietf.org

[Page 21]

11.1. Document History
substantive changes between -00 and -01:

Changed generate subcommand to generate-key

Changed convert subcommand to extract-cert

Added "Input String Types" section as distinct from indirect I/O

Made implicit arguments potentially explicit (e.g. sop armor --label=auto)

Added --allow-nested to sop armor to make it idempotent by default

Added fingerprint of signing (sub)key to VERIFICATIONS output

Dropped --mode and --session-key arguments for sop encrypt (no plausible
use, not needed for interop)

Added --with-session-key argument to sop decrypt to allow for session-key-
based decryption

Added examples to each subcommand

More detailed error codes for sop encrypt

Move from CERT to CERTS (each CERTS argument might contain multiple
certificates)

•

•

•

•

•

•

•

•

•

•

•

11.2. Future Work
detach-inband-signature-and-message subcommand (split a clearsigned
message into a message and a detached signature) (see Section 7.4)

certificate transformation into popular publication forms:

WKD

DANE OPENPGPKEY

Autocrypt

sop encrypt - specify compression? (see Section 9.2)

sop encrypt - specify padding policy/mechanism?

sop decrypt - how can it more safely handle zip bombs?

sop decrypt - what should it do when encountering weakly-encrypted (or
unencrypted) input?

sop encrypt - minimize metadata (e.g. --throw-keyids)?

•

•

◦

◦

◦

•

•

•

•

•

[Page 22]

[I-D.ietf-openpgp-rfc4880bis]

[RFC2119]

[RFC4880]

References

Normative References

,
,

, 6 September 2019
.

,
, , , , March 1997

.

handling secret keys that are locked with passwords?

specify an error if a DATE arrives as input without a time zone?

specify an error if a sop invocation sees multiple copies of a specific @FD:n input
(e.g., sop sign @FD:3 @FD:3)

add considerations about what it means for armored CERTS to contain multiple
certificates - multiple armorings? one big blob?

do we need an interface or option (for performance?) with the semantics that sop
doesn't validate certificates internally, it just accepts whatever's given as legit
data? (see Section 7.5)

•

•

•

•

•

12. Acknowledgements
This work was inspired by Justus Winter's

The following people contributed helpful feedback and considerations to this draft, but
are not responsible for its problems:

Justus Winter

Vincent Breitmoser

Edwin Taylor

Jameson Rollins

Allan Nordhoey

[OpenPGP-Interoperability-Test-Suite].

•

•

•

•

•

Koch, W., carlson, b., Tse, R., Atkins, D., and D. Gillmor
"OpenPGP Message Format" Internet-Draftdraft-ietf-openpgp-
rfc4880bis-08 , <http://www.ietf.org/internet-drafts/
draft-ietf-openpgp-rfc4880bis-08.txt>

Bradner, S. "Key words for use in RFCs to Indicate Requirement
Levels" BCP14 RFC2119 DOI10.17487/RFC2119 , <https://
www.rfc-editor.org/info/rfc2119>

[Page 23]

http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-08.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[I-D.draft-bre-openpgp-samples-00]

[OpenPGP-Interoperability-Test-Suite]

,
, , ,

November 2007 .

,
, , , , May 2017

.

Informative References

,
,

, 15 October 2019
.

, , 28
October 2019 .

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R. Thayer
"OpenPGP Message Format" RFC4880 DOI10.17487/RFC4880

, <https://www.rfc-editor.org/info/rfc4880>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words" BCP14 RFC8174 DOI10.17487/RFC8174 , <https://
www.rfc-editor.org/info/rfc8174>

Einarsson, B., juga, j., and D. Gillmor "OpenPGP
Example Keys and Certificates" Internet-Draftdraft-bre-openpgp-
samples-00 , <http://www.ietf.org/internet-drafts/
draft-bre-openpgp-samples-00.txt>

"OpenPGP Interoperability Test Suite"
, <https://tests.sequoia-pgp.org/>

Author's Address
Daniel Kahn Gillmor
American Civil Liberties Union
125 Broad St.

, New York, NY 10004
United States

 dkg@fifthhorseman.net Email:

[Page 24]

https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.ietf.org/internet-drafts/draft-bre-openpgp-samples-00.txt
http://www.ietf.org/internet-drafts/draft-bre-openpgp-samples-00.txt
https://tests.sequoia-pgp.org/
mailto:dkg@fifthhorseman.net

	Stateless OpenPGP Command Line Interface
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Terminology

	2. Examples
	3. Subcommands
	3.1. version: Version Information
	3.2. generate-key: Generate a Secret Key
	3.3. extract-cert: Extract a Certificate from a Secret Key
	3.4. sign: Create a Detached Signature
	3.5. verify: Verify a Detached Signature
	3.6. encrypt: Encrypt a Message
	3.7. decrypt: Decrypt a Message
	3.8. armor: Add ASCII Armor
	3.9. dearmor: Remove ASCII Armor

	4. Input String Types
	4.1. DATE
	4.2. USERID

	5. Input/Output Indirect Types
	5.1. CERTS
	5.2. KEY
	5.3. CIPHERTEXT
	5.4. SIGNATURE
	5.5. SESSIONKEY
	5.6. PASSWORD
	5.7. VERIFICATIONS
	5.8. DATA

	6. Failure Modes
	7. Guidance for Implementers
	7.1. One OpenPGP Message at a Time
	7.2. Simplified Subset of OpenPGP Message
	7.3. Validate Signatures Only from Known Signers
	7.4. Detached Signatures
	7.5. Reliance on Supplied Certs and Keys

	8. Guidance for Consumers
	9. Security Considerations
	9.1. Signature Verification
	9.2. Compression

	10. Privacy Considerations
	10.1. Object Security vs. Transport Security

	11. Document Considerations
	11.1. Document History
	11.2. Future Work

	12. Acknowledgements
	References
	Normative References
	Informative References

	Author's Address

